
experimentator Documentation
Release 0.3.2

Henry S. Harrison

Jan 23, 2018

Contents

1 Not handled here 3

2 An example 5

3 Installation 7
3.1 Dependencies . 7
3.2 From PyPi . 8
3.3 From source (development version) . 8

4 Other libraries 9
4.1 Alternatives . 9
4.2 Complimentary libraries . 9

5 License 11
5.1 Contents . 11

5.1.1 Concepts . 11
5.1.2 Creating an experiment . 15
5.1.3 Command-line interface . 27
5.1.4 API reference . 29
5.1.5 Indices and tables . 52

Python Module Index 53

i

ii

experimentator Documentation, Release 0.3.2

Documentation contents

Do you write code to run experiments? If so, you’ve probably had the experience of sitting down to code an experiment
but getting side-tracked by all the logistics: crossing your independent variables to form conditions, repeating your
conditions, randomization, storing intermediate data, etc. It’s frustrating to put all that effort in before even getting to
what’s really unique about your experiment. Worse, it encourages bad coding practices like copy-pasting boilerplate
from someone else’s experiment code without understanding it.

The purpose of experimentator is to handle all the boring logistics of running experiments and allow you to get
straight to what really interests you, whatever that may be. This package was originally intended for behavioral
experiments in which human participants are interacting with a graphical interface, but there is nothing domain-specific
about it–it should be useful for anyone running experiments with a computer. You might say that experimentator is
a library for ‘repeatedly calling a function while systematically varying its inputs and saving the data’ (although that
doesn’t do it full justice).

Contents 1

https://travis-ci.org/hsharrison/experimentator
https://coveralls.io/r/hsharrison/experimentator
https://pypi.python.org/pypi/experimentator
https://zenodo.org/badge/latestdoi/22554/hsharrison/experimentator
https://github.com/hsharrison/experimentator
https://pypi.python.org/pypi/experimentator
http://experimentator.readthedocs.org/en/latest/#contents

experimentator Documentation, Release 0.3.2

2 Contents

CHAPTER 1

Not handled here

• graphics

• timing

• hardware interfacing

• statistics

• data processing

The philosophy of experimentator is to do one thing and do it well. It is meant to be used with other libraries that
handle the above functionality, and gives you the freedom to choose which you prefer. It is best suited for someone
with programming experience and some knowledge of the Python ecosystem, who would rather choose the best tool
for each aspect of a project than use an all-in-one package.

Of course, there are alternatives that offer experimental design features along with other capabilities. A selection, as
well as recommended complimentary packages, are listed later in the documentation.

3

experimentator Documentation, Release 0.3.2

4 Chapter 1. Not handled here

CHAPTER 2

An example

To demonstrate, let’s create a simple perceptual experiment. For the sake of example, imagine we will present some
stimulus to either the left or right side of the screen for a specified amount of time, and ask the participant to identify it.
We’ll use a factorial 2 (side) x 3 (display time) design, and have a total of 60 trials per participant (10 per condition).
Here’s how it might look in experimentator:

import random
from time import time
from experimentator import Experiment, order

def present_stimulus_and_get_response(stimulus, side, duration):
Use your imagination...
return random.choice(['yes', 'no'])

def run_trial(experiment, trial):
stimulus, answer = random.choice(

list(experiment.experiment_data['stimuli'].items()))
start_time = time()
response = present_stimulus_and_get_response(trial.data['side'], trial.data[

→˓'display_time'])
result = {

'reaction_time': time() - start_time,
'correct': response == answer

}
return result

if __name__ == '__main__':
independent_variables = {

'side': ['left', 'right'],
'display_time': [0.1, 0.55, 1],

}
stimuli_and_answers = {

'cat.jpg': 'yes',

5

experimentator Documentation, Release 0.3.2

'dog.jpg': 'no',
}

experiment = Experiment.within_subjects(independent_variables,
n_participants=20,
ordering=order.Shuffle(10),
filename='exp_1.exp')

experiment.experiment_data['stimuli'] = stimuli_and_answers
experiment.add_callback('trial', run_trial)
experiment.save()

Running this script will create the experiment in the file exp_1.exp. We can now run sessions from the command
line:

exp run exp_1.exp participant 1
or
exp run exp_1.exp --next participant

Eventually, we can export the data to a text file:

exp export exp_1.exp exp_1_data.csv

Or, access the data in a Python session:

from experimentator import Experiment

data = Experiment.load('exp_1.exp').dataframe

In this example the data will be a pandas DataFrame with six columns: two index columns with labels
'participant' and 'trial', two columns from the IVs, with labels 'side' and 'display_time',
and two data columns with labels 'reaction_time' and 'correct' (the keys in the dictionary returned by
run_Trial).

6 Chapter 2. An example

CHAPTER 3

Installation

Note: If you use experimentator in your work, published or not, please let me know. I’m curious to know what you
use it for! If you do publish, citation information can be found here.

3.1 Dependencies

Experimentator requires Python 3.3 or later. It also depends on the following Python libraries:

• numpy

• pandas

• docopt

• schema

• PyYAML

• NetworkX

Required for tests:

• pytest

Required for generating docs:

• Sphinx

• numpydoc

• sphinx-rtd-theme

The easiest way to install these libraries, especially on Windows, is with Continuum’s free Python distribution Ana-
conda. For experimentator, Anaconda3 or the lightweight Miniconda3 is recommended, although you can create a
Python3 conda environment regardless of which version you initially download.

7

mailto:henry.schafer.harrison@gmail.com
https://zenodo.org/badge/latestdoi/22554/hsharrison/experimentator
http://www.numpy.org
http://pandas.pydata.org
http://docopt.org/
https://github.com/halst/schema
http://pyyaml.org/wiki/PyYAML
http://networkx.readthedocs.org/en/stable/index.html
http://pytest.org/latest/
http://sphinx-doc.org/
https://github.com/numpy/numpydoc
https://github.com/snide/sphinx_rtd_theme
https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/

experimentator Documentation, Release 0.3.2

For example, to install dependencies to a clean environment (with name experiment):

conda update conda
conda create -n experiment python=3 pip
source activate experiment
conda install numpy pandas pyyaml networkx
pip install docopt schema

3.2 From PyPi

To install (and upgrade) experimentator:

pip install --upgrade experimentator

Be sure to run pip from a Python 3 environment.

3.3 From source (development version)

Experimentator is hosted on GitHub:

git clone git@github.com:hsharrison/experimentator
cd experimentator
pip install -e . --upgrade

8 Chapter 3. Installation

https://github.com/hsharrison/experimentator

CHAPTER 4

Other libraries

Please, feel free to submit a pull request to add your software to one of these lists.

4.1 Alternatives

The Python ecosystem offers some wonderful alternatives that provide experiment logistics in addition to other func-
tionality like graphics and input/output:

• expyriment: Graphics, input/output, hardware interfacing, data preprocessing, experimental design. If you are
coming from the Matlab world, this is the closest thing to Psychtoolbox.

• OpenSesame: An all-in-one package with a graphical interface to boot. An impressive piece of software.

4.2 Complimentary libraries

What about all those important things that experimentator doesn’t do? Here’s a short selection. If you’re already using
Python some of these will go without saying, but they’re included here for completeness:

• experimental design

– pyDOE: Construct design matrices in a format that experimentator can use to build your experiment.

• graphics

– PsychoPy: A stimulus-presentation library with an emphasis on calibration and temporal precision.
Unfortunately, at the time of this writing it is not yet Python3-compatible, and so cannot be easily
combined with experimentator.

– Pygame: Very popular.

– Pyglet: A smaller community than Pygame, but has several advantages, including cross-compatibility
and a more pythonic API. Includes OpenGL bindings.

– PyOpenGL: If all you need is to make OpenGL calls.

9

https://code.google.com/p/expyriment/
http://psychtoolbox.org/HomePage
http://www.osdoc.cogsci.nl/
http://pythonhosted.org/pyDOE/
http://psychopy.org/
http://pygame.org/news.html
http://www.pyglet.org/
http://pyopengl.sourceforge.net/

experimentator Documentation, Release 0.3.2

• graphical user interfaces

– urwid: Console user interface library, ncurses-style.

– wxPython: Python bindings for the wxWidgets C++ library.

– PyQT: QT bindings.

– PySide: Another QT option.

– PyGTK: Python bindings for GTK+.

• statistics and data processing

– pandas: Convenient data structures. Experimental data in experimentator is stored in a pandas
DataFrame.

– numpy: Matrix operations. The core of the Python scientific computing stack.

– SciPy: A comprehensive scientific computing library spanning many domains.

– Statsmodels: Statistical modeling and hypothesis testing.

– scikit-learn: Machine learning.

– rpy2: Call R from Python. Because sometimes the model or test you need isn’t in statsmodels or
scikit-learn.

10 Chapter 4. Other libraries

http://urwid.org/
http://wxpython.org/
http://www.riverbankcomputing.com/software/pyqt/intro
http://qt-project.org/wiki/PySide
http://www.pygtk.org/
http://pandas.pydata.org
http://www.numpy.org
http://docs.scipy.org/doc/scipy/reference/
http://statsmodels.sourceforge.net/
http://scikit-learn.org/stable/
http://rpy.sourceforge.net/rpy2.html

CHAPTER 5

License

Licensed under the MIT license.

5.1 Contents

5.1.1 Concepts

About this documentation

This documentation aims to be comprehensive, but be aware that there is also rich information available in docstrings.
These can be accessed at the interactive prompt with the help function; they are also reproduced in API reference.

Experiment structure

In experimentator, experiments (represented by an Experiment instance) are organized as hierarchical tree struc-
tures. Each section of the experiment (represented by an ExperimentSection instance) is a node in this tree, and
its children are the sections it contains. Levels on the tree are named; common level names in behavioral research are
'participant', 'session', 'block', and 'trial'. For example, an experiment with two participants with
two blocks of three trials each would have a tree that looks like this:

'_base' ______________1______________
/ \

'participant' ______1______ ______2______
/ \ / \

'block' ___1___ ___2___ ___1___ ___2___
/ | \ / | \ / | \ / | \

'trial' 1 2 3 1 2 3 1 2 3 1 2 3

The top level is always called '_base'; the leading underscore indicates that you should not have to refer to this
level directly. All other level names are arbitrary and are specified when the experiment is created.

11

experimentator Documentation, Release 0.3.2

An important principle of experimentator is that each section only handles its children, the sections immediately
below it. In a structure with levels 'participant', 'block', and 'trial', every block section knows how to
create and order trials (e.g., by crossing independent variables), but knows nothing of participants. Likewise, every
participant section organizes the blocks under it, but lets each block figure out its constitutent trials. The only exception
to this rule is in the case of non-atomic orderings.

Note: For simplicity, this documentation uses the term trial to mean the lowest level of an experiment, even though
experimentator will let you use whatever string you want to name this level.

Navigating structure

Note: Be aware that experimentator uses 1-based indexing when numbering sections and indexing
ExperimentSection instances, as in the diagram above.

An experimental hierarchy can be explored in a number of ways. Given an Experiment object, any section can be
found by direct indexing:

Assuming the same structure as the diagram above.
experiment[1] # first participant
experiment[1][2] # second block of first participant
experiment[1][2][2] # second trial of second block of first participant
experiment[1, 2, 2] # same as previous

Alternatively, the subsection method can be used. The following finds the same sections as the previous example:

experiment.subsection(participant=1)
experiment.subsection(participant=1, block=2)
experiment.subsection(participant=1, block=2, trial=2)

The generator method all_subsections yields all subsections matching the given criteria. For example, with the
same experiment structure,

list(experiment.all_subsections(block=2, trial=1))

will return the same list as

[experiment.subsection(participant=1, block=2, trial=1),
experiment.subsection(participant=2, block=2, trial=1)]

There are other methods to help find specific sections, for example find_first_not_run,
find_first_partially_run, and the more general depth_first_search and
breadth_first_search. These last two methods allow you to define the search criteria with a custom
key function that returns True for the desired section.

Design

In experimentator, every section has a design, represented by a Design object (usually, these will be created for you).
Most of the time, all sections at the same level have the same design (but see Heterogeneous experiment structures).
The design is a high-level description of one level of an experiment. It includes everything experimentator needs to
know to create the children of a section. This consists of two things: independent variables and an ordering method.

12 Chapter 5. License

experimentator Documentation, Release 0.3.2

An experiment requires multiple Design instances in a certain relationship to each other. Such a collection is modeled
with DesignTree objects. Again, you usually will not manually create these.

Independent variables

A central concept in experimentator (and in experimental design more generally) is that of independent variables, or
IVs. An IV is a variable that you are explicitly varying in order to test its effects. The easiest way to represent IVs in
experimentator is using a dictionary. Each key is a string, the name of an IV. Each value is either a list, representing
the possible values the IV can take, or None if the IV takes continuous values (continuous values are only possible
with a design matrix). For example:

>>> independent_variables = {
... 'congruent': [True, False],
... 'distractor': [None, 'left', 'right'],
... }

Note: In Python, dictionaries have no order. In most cases, the order of IVs is not important and so representing IVs
as dictionaries will work fine. However, there are times when the order you specify the IVs is important. This is the
case, for example, when using a design matrix, because each column of the design matrix refers to one IV. You will
need to rely on the order of IVs in order to know which column controls which IV. In these cases you should use one
of two alternative ways of representing IVs: using a collections.OrderedDict, or a list of 2-tuples. Here is
an example of the latter method (equivalent to the previous example):

>>> independent_variables = [
... ('congruent', [True, False]),
... ('distractor', [None, 'left', 'right']),
...]

When you specify your IVs, you will specify them separately for every level of the experiment. That is, every IV is
associated with a level of the experimental hierarchy. This determines how often the IV value changes. For example,
a within-subjects experiment will probably have IVs at the 'trial' level, a between-subjects experiment will have
IVs at the 'participant' level, and a mixed-design experiment will have both. An IV at the 'participant'
level will always take the same value within each participant. Similarly, a blocked experiment may have IVs at the
'block' level; these IVs will only take on a new value when a new block is reached.

IV values are ultimately passed to your run callback as a condition. A condition is a combination of specific IV values.
Although you don’t need to create conditions yourself, you can think of them as dictionaries mapping IV names to
values. For example, the six conditions generated by a full factorial cross of the IVs above are:

[{'congruent': True, 'distractor': None},
{'congruent': True, 'distractor': 'left'},
{'congruent': True, 'distractor': 'right'},
{'congruent': False, 'distractor': None},
{'congruent': False, 'distractor': 'left'},
{'congruent': False, 'distractor': 'right'}]

Just like IVs, different conditions apply at different levels of the experimental hierarchy. These conditions propa-
gate down the tree. For example, imagine a trial has one of the conditions in the list above, {'congruent':
True, 'distractor': None}. The block that the trial is part of may have an additional condition, like
{'practice': False}. When the trial is run, these conditions are effectively merged.

Note: This merging is implemented with the standard-library object collections.ChainMap. A ChainMap
can be accessed just like a dictionary; this is the sense in which it is correct to say that the conditions are merged. To

5.1. Contents 13

https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.ChainMap
https://docs.python.org/3/library/collections.html#collections.ChainMap

experimentator Documentation, Release 0.3.2

continue the example, one can access the IV values without worrying about what level each IV came from:

>>> condition['congruent']
True
>>> condition['practice']
False

However, it is possible to differentiate the conditions if needed, using the maps attribute. See the ChainMap docs
for details. You might see something like this:

>>> condition.maps[0]
{'trial': 1,
'congruent': True,
'distractor': None}

>>> condition.maps[1]
{'block': 2,
'practice': False}

>>> condition.maps[2]
{'participant': 1}

Orderings

The second element of a design is an ordering method. The ordering method determines how children of a section wll
be ordered (and possibly repeated). For example, an experiment may shuffle trials within each block, counter-balance
blocks within each session, and put all sessions within each participant in the same order.

Each ordering method is a class in the experimentator.order module. Currently, experimentator includes
Ordering (the base class, resulting in a deterministic order), Shuffle, CompleteCounterbalance, Sorted,
and LatinSquare. Shuffle is usually the default, except if you’re using a design matrix, in which case experi-
mentator assumes you want a deterministic order and makes Ordering the default.

Each ordering method class has different parameters, so see the specific API reference for details. Commonly, the
first argument is number, which specifies the number of times each condition will be repeated. For example, with
the ordering method Shuffle(3), each unique condition will be repeated three times, and then the order will be
randomized.

Non-atomic orderings

The included ordering classes can be divided into two categories: atomic and non-atomic. If every ordering of sections
is independent of all other orderings, then the ordering method is atomic. For example, if trials within a block are
shuffled, then the ordering of trials within each block will be independent. Each block can shuffle its trials without
needing to know the order of trials within the other blocks.

However, this is not the case for non-atomic orderings. The ordering of sections using non-atomic or-
derings are dependent on each other. For example, if blocks within a session are counterbalanced using
CompleteCounterbalance, then each session cannot, on its own, determine the order of blocks within it.

Non-atomic orderings are implemented by automatically creating a new independent variable. For ex-
ample, if the 'block' level has three conditions (e.g., one IV with three possible values) and a
CompleteCounterbalance ordering (with number=1), then there are six possible orderings of blocks. A new
IV called 'counterbalance_order' will be automatically created one level up (e.g., at the 'session' level),
with six possible values (the integers 0-5).

14 Chapter 5. License

https://docs.python.org/3/library/collections.html#collections.ChainMap.maps
https://docs.python.org/3/library/collections.html#collections.ChainMap

experimentator Documentation, Release 0.3.2

Don’t forget to take this automatically-created IV into account when designing your experiment. In the above example,
if there are no other IVs at the 'session' level, and number=1 for the 'session' ordering, there will still be
six sessions per participant due to the six conditions defined by the 'counterbalance_order' IV.

Only Ordering and Shuffle are atomic; the other ordering methods provided in experimentator are non-atomic
(the Sorted ordering method straddles the line; it may or may not be atomic, depending on the parameter order.
If order='ascending' or order='descending', then the ordering method is atomic as it is sorted the
same way at every section. However, if order='both', then it is non-atomic and a new IV {'order':
['ascending', 'descending']} will be created).

Why use levels?

You may be wondering how many levels to use, or why to use them at all (after all, flat is better than nested). That
decision must be made on a case-by-case basis. For example, imagine your experiment has sessions of 20 trials,
divided into two blocks. As long as the order of conditions within each session is correctly specified (for example,
by using a design matrix), using an explicit 'block' level may not be necessary. Alternatively, you could define
a 'block' level but not a 'trial' level and stick a trial loop inside the block. However, using levels makes it
possible to. . .

• associate an IV with a level, facilitating the creation and ordering of conditions.

• run code before and/or after every section at a particular level, using section context managers. For example,
offer participants a break between blocks.

• run experiment sections by level (using the command-line interface). For example, using blocks you could do

exp run my_exp.exp participant 1 block 2

rather than the more awkward

exp run my_exp.exp participant 1 --from 11

• index the data by level, after running the experiment, using hierarchical indexing. For example, to get the third
trial of the first participant’s second block you could do

experiment.dataframe.loc[(1, 2, 3), :]

or to get the first trial of the second block of every participant,

data.xs((2, 1), level=('block', 'trial'))

Heterogeneous experiment structures

A final concept to explain is the difference between homogeneous and heterogeneous experiment structures. In a
homogeneous experiment, every section at the same level has the same design. For example, if the first block contains
ten trials and the second block contains twenty, the experiment structure is heterogeneous. If the order of blocks
within the first session is random but the order of blocks within the second session is counterbalanced, the experiment
structure is heterogeneous. Even different possible IV values across sections is enough to break homogeneity.

Heterogeneous experiments are a little trickier to set up, but they are fully supported by experimentator. See Con-
structing heterogeneous experiments.

5.1.2 Creating an experiment

The typical workflow using experimentator is relatively straightforward:

5.1. Contents 15

http://legacy.python.org/dev/peps/pep-0020/

experimentator Documentation, Release 0.3.2

1. Create an Experiment instance.

2. Run the experiment using the command-line interface.

3. Inspect, analyze or export the resulting data.

Constructor methods

The most general way to create an Experiment is to use Experiment.new , but there are a number of other
methods that may be easier for many use cases.

Simple constructor methods

These methods construct Experiment instances based on common experimental designs.

• Experiment.within_subjects: Construct an experiment with levels 'participant' and
'trial', and IVs only at the 'trial' level. For example:

>>> from experimentator import Experiment, order
... independent_variables = {
... 'side': ['left', 'right'],
... 'display_time': [0.1, 0.55, 1],
... }
... experiment = Experiment.within_subjects(
... independent_variables,
... n_participants=20,
... ordering=order.Shuffle(10)
...)

The above creates a 2 (side) by 3 (display time) within-subjects experiment, with 10 trials of each condition and
20 participants. Trials will be shuffled within participants.

• Experiment.blocked: Construct an experiment with levels 'participant', 'block', and
'trial', with IVs at the 'trial' level (and optionally at the 'block' level also). The following con-
structs an experiment identical to the previous example, except with each participant’s 60 trials split into two
blocks:

>>> from experimentator import Experiment, order
... independent_variables = {
... 'side': ['left', 'right'],
... 'display_time': [0.1, 0.55, 1],
... }
>>> experiment = Experiment.blocked(
... independent_variables,
... n_participants=20,
... orderings={
... 'trial': order.Shuffle(5),
... 'participant': order.Ordering(2),
... }
...)

In the above example, it doesn’t matter what ordering method we use at the 'block' level; since there are no
block-level IVs, all blocks are identical. We could, alternatively, introduce an IV at the block level:

>>> from experimentator import Experiment, order
... independent_variables = {
... 'side': ['left', 'right'],

16 Chapter 5. License

experimentator Documentation, Release 0.3.2

... 'display_time': [0.1, 0.55, 1],

... }
>>> experiment = Experiment.blocked(
... independent_variables,
... block_ivs={'difficulty': ['easy', 'hard']}
... n_participants=20,
... orderings={'trial': order.Shuffle(5)}
...)

In this example, we introduced the IV 'difficulty' with two levels. Since we didn’t specify an ordering
for blocks, Shuffle(1) will be used. In other words, each participant will experience one 'easy' and one
'hard' block, in a random order.

• Experiment.basic: Construct an experiment with arbitrary levels but a homogeneous structure. This
constructor can handle any experimental structure, with the exception of heterogeneity. For example, to create
the same blocked experiment as in the previous example:

>>> from experimentator import Exeriment, order
>>> independent_variables = {
... 'trial': {
... 'side': ['left', 'right'],
... 'display_time': [0.1, 0.55, 1],
... },
... 'block': {'difficulty': ['easy', 'hard']},
... }
>>> experiment = Experiment.basic(
... ('participant', 'block', 'trial'),
... independent_variables,
... ordering_by_level={
... 'participant': order.Ordering(20),
... 'trial': order.Shuffle(5),
... }
...)

Again, the default Shuffle(1) will be used at the 'block' level.

We could also use Experiment.basic to make a mixed-design experiment, by adding a new IV at the
'participant' level:

>>> from experimentator import Exeriment, Shuffle
>>> independent_variables = {
... 'trial': {
... 'side': ['left', 'right'],
... 'display_time': [0.1, 0.55, 1],
... },
... 'block': {'difficulty': ['easy', 'hard']},
... 'participant': {'vision': ['monocular', 'binocular']},
... }
>>> experiment = Experiment.basic(
... ('participant', 'block', 'trial'),
... independent_variables,
... ordering_by_level={
... 'participant': Shuffle(20),
... 'trial': Shuffle(5),
... }
...)

In addition to adding the IV 'vision' at the 'participant' level, we also changed the

5.1. Contents 17

experimentator Documentation, Release 0.3.2

'participant' ordering from Ordering to Shuffle in order to assign participants to conditions ran-
domly. Note that we kept the number parameter on the 'participant' ordering at 20; this means our
experiment will now require 40 participants, since there will be 2 conditions at the 'participant' level.

Specification-based constructor methods

Experimentator provides a dictionary-based specification format for creating new Experiment instances. There are
two relevant constructor methods: Experiment.from_dict constructs an Experiment given a dictionary, and
Experiment.from_yaml_file constructs an Experiment given the path to a file containing the specification
in YAML format.

The specification is the same for both. Central to the specification format is specifying a DesignTree and its
constituent Design instances.

Design specification format

See also:

Design More information on the Design concept.

Design.from_dict The method that implements the construction of a Design from a specification dictionary.

A single Design instance can be created from a dictionary (either a Python dict or read from a YAML file via
Experiment.from_yaml_file). The dictionary can contain any of the following keys, all optional:

• 'name': The name of the level.

• 'ivs': The designs’s independent variables. Can be a dictionary mapping IV names to possible IV values, or
a list of (name, values) tuples. See Independent variables. If 'ivs' is not specified, the design will have
no IVs.

• 'order' or 'ordering': The design’s ordering method. Can be specified in three ways:

– as a string, interpreted as a class name in the order module;

– as a dictionary, with the key 'class' containing the class name and the rest of the items containing
keyword arguments to its constructor; or

– as a sequence, with the first item containing the class name and the rest of the items containing positional
arguments to its constructor.

If no ordering is specified, the default is Shuffle (Ordering if a design matrix is used).

• 'n' or 'number': The number argument to the specified ordering class can be specified here (or as part of
the ordering specification).

• 'design_matrix': An array-like (e.g., a list of lists) specifying a design matrix to use at this level. See
Design matrices.

• Any remaining fields are passed to the Design constructor as the extra_data argument. These values are
associated with any sections created under this design. For example, you could pass {'practice': True}
to practice blocks, to mark them as such.

For example, the following creates a Design instance equivalent to the one at the 'trial' level in the previous
example (of Experiment.basic):

>>> from experimentator import Design
>>> level_name, design = Design.from_dict(dict(
... name='trial',
... ivs={

18 Chapter 5. License

http://en.wikipedia.org/wiki/YAML
http://en.wikipedia.org/wiki/YAML

experimentator Documentation, Release 0.3.2

... 'side': ['left', 'right'],

... 'display_time': [0.1, 0.55, 1],

... },

... ordering='Shuffle',

... n=5,

...))

For internal reasons, Design.from_dict outputs the level name as well as the Design object. This shouldn’t be
too important, because you will probably not be calling Design.from_dict directly, but rather using the dictionary
format within Experiment.from_dict or Experiment.from_yaml_file.

DesignTree specification format

See also:

DesignTree.from_spec The method that implements this specification.

To create an Experiment, multiple Design instances are needed, collected under a single DesignTree. This
can also be done with a relatively simple specification format.

To create a DesignTree with a homogeneous structure, simply create a list of dictionaries, each specifying the
Design of one level, ordered from top to bottom. For example, to create the DesignTree equivalent to the
Experiment.basic mixed-design example above:

>>> from experimentator import DesignTree
>>> tree = DesignTree.from_spec([
... dict(name='participant',
... ivs={'vision': ['monocular', 'binocular']},
... n=20),
... dict(name='block',
... ivs={'difficulty': ['easy', 'hard']}),
... dict(name='trial',
... ivs={
... 'side': ['left', 'right'],
... 'display_time': [0.1, 0.55, 1]},
... n=5),
...])

This example takes advantage of the default ordering of Shuffle for all three levels.

A DesignTree can also be constructed with a list of (level_name, level_design) tuples, though the
specification format is more convenient as it can be used as part of the Experiment specification format.

Creating heterogeneous structures is a little more tricky; it will be described below.

Experiment specification format

Once you can build a specification input suitable for DesignTree.from_spec, constructing an Experiment is
straightforward. Create a dictionary with the following keys:

• 'design': The DesignTree spec goes here (the list of dictionaries described above). This is the only
required key.

• 'file' or 'filename': Use this field to associate your experiment with a data file. This is saved in the
Experiment.filename attribute. Note that the Experiment will not be saved automatically; you still
have to call Experiment.save().

5.1. Contents 19

experimentator Documentation, Release 0.3.2

• Any remaining fields will be saved as a dictionary in Experiment.experiment_data. This is a good
place to put local configuration that you read during a callback.

Using YAML

All the nested lists and dictionaries required for Experiment.from_dict can be unwieldy. An alternative is
Experiment.from_yaml_file, which allows you to save your specification in an external file. YAML is a
file-format designed to be both human- and computer-readable.

Porting the previous mixed-design example into a YAML file would look like this:

design:
- name: participant
ivs:

vision: [monocular, binocular]
n: 20

- name: block
ivs:

difficulty: [easy, hard]

- name: trial
ivs:

side: [left, right]
display_time: [0.1, 0.55, 1]

n: 5

filename: mixed_experiment.exp

The only new piece of information here is the filename. It probably makes sense to include the filename in your YAML
file, so you have a record of which data file is associated with the YAML file.

You can then create instantiate an Experiment, assuming the YAML above is stored in mixed_experiment.
yaml:

>>> from experimentator import Experiment
>>> experiment = Experiment.from_yaml_file('mixed_experiment.yaml')

Note: This method is specifically for creating an Experiment from scratch. The data format used by
Experiment.save for saving an in-progress experiment is also YAML, but using a different syntax, so it could be
confused. This is why we recommend a different file suffix (our examples use .exp). The in-progress experiment file
with the .exp suffix will still contain YAML data, but it will be less likely to be confused with the YAML file passed
to Experiment.from_yaml_file.

Constructing an Experiment from a DesignTree

A final option for constructing an Experiment is to pass a DesignTree directly to the general constructor
Experiment.new . For example, the following code would create the same Experiment as the previous ex-
ample:

>>> from experimentator import DesignTree, Experiment
>>> tree = DesignTree.from_spec([
... dict(name='participant',

20 Chapter 5. License

http://en.wikipedia.org/wiki/YAML

experimentator Documentation, Release 0.3.2

... ivs={'vision': ['monocular', 'binocular']},

... n=20),

... dict(name='block',

... ivs={'difficulty': ['easy', 'hard']}),

... dict(name='trial',

... ivs={

... 'side': ['left', 'right'],

... 'display_time': [0.1, 0.55, 1]},

... n=5),

...])
>>> experiment = Experiment.new(tree, filename='mixed_experiment.exp')

Constructing heterogeneous experiments

As we’ve noted, constructing a heterogenous Experiment is a bit more complicated. To expand on the above
example, let’s imagine we want to create a two-session experiment. The first session contains only one block, with
only easy trials. The second session will then contain an easy and a hard block. Furthermore, we would like to add
four practice trials at the beginning of each session.

Heterogeneity is created at the level of the DesignTree. Remember how we built a DesignTree as a list of
dictionaries? To create a heterogeneous DesignTree, we need multiple lists of dictionaries. We use a dictionary,
where each value is a list of dictionaries (specifying an internally homogeneous section of the tree), and the keys give
names to these sub-trees.

Experimentator will create the DesignTree by starting at the sub-tree with the key 'main'. When it reaches the
bottom of this sub-tree, it decides how to continue by looking for a special IV named 'design'. If this IV exists, it
uses its value to decide which sub-tree to use next. When it reaches the end of these sub-trees, if there is an IV called
'design' it again uses it to determine which sub-tree to use next. If there is no IV called 'design', then three
tree ends. In other words, the possible values of the 'design' IV should be names of sub-trees.

For example, let’s make our experiment more complex by adding practice trials and two different session types. We’ll
add the practice trials by creating a new level called 'section', with the first section of each session proceeding to
the practice trials, and the second into the experimental blocks.

We’ll use the Experiment.from_yaml_file format:

design:
main:
- name: participant

ivs:
vision: [monocular, binocular]

n: 20

- name: session
ivs:

design: [first_session, second_session]
ordering: Ordering

first_session:
- name: section

ivs:
design: [practice, first_experimental_section]

ordering: Ordering

second_session:
- name: section

ivs:

5.1. Contents 21

experimentator Documentation, Release 0.3.2

design: [practice, second_experimental_section]
ordering: Ordering

practice:
- name: trial

ivs:
difficulty: [easy]
side: [left, right]
display_time: [0.1, 1]

practice: True

first_experimental_section:
- name: trial

ivs:
difficulty: [easy]
side: [left, right]
display_time: [0.1, 0.55, 1]

n: 10
practice: False

second_experimental_section:
- name: block

ivs:
difficulty: [easy, hard]

- name: trial
ivs:

side: [left, right]
display_time: [0.1, 0.55, 1]

n: 5
practice: False

filename: mixed_experiment.dat

Now we have a complex, heterogeneous experiment. Each participant will have two sessions; each session will start
with four practice trials (a cross of two levels of the IV 'side', two levels of the IV 'display_time', and
one level of the IV 'easy'). The first session will include, after the practice section, sixty trials all with difficulty
'easy'. The second session will include, after the practice session, two blocks in random order, the first with
difficulty 'easy' and the second 'hard', each with 30 trials. To make this happen we created four sub-trees in
addition to the 'main tree.

Note that we added the custom key 'practice' to the 'trial' level, to be able to more easily identify practice
and experimental trials later (Alternatively, we could separate them later by looking for trials with section==2 and
ignoring trials with section==1). Also note that we use the Ordering method to produce a predictable order of
the sub-trees. Otherwise, Shuffle is the default and we would get our sub-trees in a random order. Sometimes this
is what we want, however. Because sub-trees are determined based on IV values, we can manipulate them in the same
way as with other IVs, with ordering methods, design matrices, and even crossing them with other “normal” IVs.

It is not necessary to have the same level names for all possible routes down the tree. In this example, there are no
blocks in the first session (or the practice section of the second session, for that matter). However, it is critical that all
IVs get assigned a value in one place or another. In this example, the only place that the IV 'difficulty' can take
the value 'hard' is at the 'block' level of the second session. In other places on the design tree, we have to create
an IV 'difficulty' with only one level ('easy') to ensure that we never generate a trial without assigning a
value to the IV 'difficulty'.

22 Chapter 5. License

experimentator Documentation, Release 0.3.2

Manually modifying experiments

Another way to create complex experiment structures is to first construct a simple experiment, then manually mod-
ify it. For example, you can use the method ExperimentSection.append_child to add a child under any
given section, or ExperimentSection.append_design_tree to add an entire sub-tree. See these methods’
docstrings for details. Be sure to call Experiment.save after to make the changes permanent.

Design matrices

In all the examples so far, we’ve only specified possible IV values; we let experimentator handle the creation of con-
ditions of them. Experimentator will use a full factorial cross, constructing a condition for every possible combination
of IV values. Sometimes this isn’t what we want, though. In a fractional factorial design, for example, only a subset of
the possible combinations are used. We can specify these, and other, designs in experimentator using design matrices.

The support for design matrices in experimenator is designed to be compatible with the Python library pyDOE. This
is a library that allows for easy creation of various common design matrices.

Design matrices can be specified during the creation of Design objects. This is the same place where IVs are specified
when using the Specification-based constructor methods.

Each column of the design matrix is associated with one IV; a design matrix should have the same number of columns
as the number of IVs in the design at that level. The order of IVs is important when using design matrices; because
dictionaries in Python have no inherent order, OrderedDict should be used when defining IVs with design matrices,
or alternatively IVs can be specified as a list of tuples (see the IV docs).

Each row of the design matrix is one condition, and the values of the matrix are interpreted in one of two ways:

• If the levels of an IV are passed as None rather than a list, then the IV is assumed to take arbitrary, continuous
values. The values in the associated column of the design matrix are then interpreted at “face value”.

• Otherwise, each value in the design matrix is interpreted as an index, determining which value to take from the
list of possible IV values. Experimentator is smart about this and only cares about the relative value of these
“indices”. For example, if a design matrix column contains the values 0 and 1, they will be associated with the
first and second IV values, respectively. Alternatively, if the column contains 1 and 2, then 1 will be associated
with the first and 2 the second IV value.

A design matrix can also specify the order of conditions, by the order of its rows. For this reason, the default ordering
method is Ordering when a design matrix is used. Change this to Shuffle, for example, if you instead want the
rows of the design matrix to appear in a random order.

Here is an example of using a Box-Behnken design with pyDOE:

>>> import pyDOE
>>> from experimentator import Design
>>> design_matrix = pyDOE.bbdesign(3)
>>> print(design_matrix)
[[-1. -1. 0.]
[1. -1. 0.]
[-1. 1. 0.]
[1. 1. 0.]
[-1. 0. -1.]
[1. 0. -1.]
[-1. 0. 1.]
[1. 0. 1.]
[0. -1. -1.]
[0. 1. -1.]
[0. -1. 1.]
[0. 1. 1.]

5.1. Contents 23

http://en.wikipedia.org/wiki/Fractional_factorial_design
http://en.wikipedia.org/wiki/Design_matrix
http://pythonhosted.org//pyDOE/index.html
https://docs.python.org/3/library/collections.html#collections.OrderedDict
http://pythonhosted.org/pyDOE/rsm.html
http://pythonhosted.org//pyDOE/index.html

experimentator Documentation, Release 0.3.2

[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

>>> trial_design = Design.from_dict(dict(
... ivs=[('target_size', [10, 20, 30]),
... ('target_speed', [5, 10, 20]),
... ('target_position', None)],
... design_matrix=design_matrix,
...))
>>> # The following is just to demonstrate the conditions that are created.
>>> # These methods are usually called behind the scenes.
>>> trial_design.first_pass()
IndependentValue(name=(), values=())
>>> trial_design.get_order()
[{'target_position': 0.0, 'target_size': 10, 'target_speed': 5},
{'target_position': 0.0, 'target_size': 30, 'target_speed': 5},
{'target_position': 0.0, 'target_size': 10, 'target_speed': 20},
{'target_position': 0.0, 'target_size': 30, 'target_speed': 20},
{'target_position': -1.0, 'target_size': 10, 'target_speed': 10},
{'target_position': -1.0, 'target_size': 30, 'target_speed': 10},
{'target_position': 1.0, 'target_size': 10, 'target_speed': 10},
{'target_position': 1.0, 'target_size': 30, 'target_speed': 10},
{'target_position': -1.0, 'target_size': 20, 'target_speed': 5},
{'target_position': -1.0, 'target_size': 20, 'target_speed': 20},
{'target_position': 1.0, 'target_size': 20, 'target_speed': 5},
{'target_position': 1.0, 'target_size': 20, 'target_speed': 20},
{'target_position': 0.0, 'target_size': 20, 'target_speed': 10},
{'target_position': 0.0, 'target_size': 20, 'target_speed': 10},
{'target_position': 0.0, 'target_size': 20, 'target_speed': 10}]

Design.get_order (usually called behind the scenes) gives us a list of conditions, each a dictionary. We
can see here the correspondence between the design matrix and the conditions. Because we used None with
'target_position', its values are taken directly from the matrix. For the other IVs, the values are taken from
the list of possible values that we defined them with.

Callbacks

Up to this point, we’ve explained how to create an experiment of arbitrary complexity. But presumably you actually
something to happen when you run a trial. This is accomplished with callbacks. In general, a callback is a function
that you supply that is automatically triggered at a certain time. There are two types of callbacks in experimentator,
the function callbacks and context-managers. Both are set with Experiment.add_callback.

Note: Be sure to save your experiment to disk after setting a callback, using Experiment.save, to make the
changes permanent.

Note: Experimentator does not store the callbacks with your Experiment, but rather every time you load your
experiment, the callbacks are re-imported. Experimentator looks for a Python file with the same name as the functions
were originally defined in. As a result, the data file exported by Experiment.save is not sufficient when you want
to move an experiment between computers. You will also need to move the Python file(s) in which any callbacks are
defined.

Experiment.add_callback also takes optional keyword arguments func_name and func_module that you
can set to tell experimentator where to look for the callback.

24 Chapter 5. License

experimentator Documentation, Release 0.3.2

Function callbacks

The most basic callbacks are function callbacks. A function callback runs at the start of every section at its level. Most
commonly, this is used at the trial level to set the “trial function”; on other words, the behavior of every trial.

Callbacks should take two positional arguments. It will be passed the current Experiment and
ExperimentSection instances, respectively. Everything that the run callback might need to know can be taken
from these arguments. Here are the most useful attributes:

• ExperimentSection.data: This is the ChainMap that contains the condition (IV values) for the cur-
rently running trial. It also includes the section numbers, for example section.data['trial'] will get
the current trial number.

• Experiment.experiment_data: This is a dictionary that you can use to store persistent data that every
callback will have access to. By default, it is empty, but you can put data in here and it will always be available,
even across sessions of the Python interpreter. This means that everything you put here must be picklable, so
not everything will work.

• Experiment.session_data: This is where you can store data that is only persistent within the current
session of the Python interpreter. Every time Python exits, this dictionary is emptied. This means you can store
data here even if it is not picklable. This is the place to store external resources like multimedia data. You can
reload these resources during a context-manager callback.

The callback should return a dictionary, mapping dependent variable (DV) names to values. The DV names are only
used to label the columns in the final representation of the experiment’s data, Experiment.dataframe.

Set function callbacks using the Experiment.add_callback method. You can also pass this method arbi-
trary positional and keyword arguments. Therefore, the full signature for a callback is func(experiment,
section, *args, **kwargs), where func (the callback itself), *args, and **kwargs, are arguments to
Experiment.add_callback.

Context-managers

The second type of callback is the context manager. The name context manager is taken from the Python standard
library, where they are referred to as With Statement Context Managers (the with statement is one way to use context
managers, but it is not generally used to create them). Fundamentally, a context manager specifies behavior that should
occur before something, and behavior that should occur after. In experimentator, the idea is that you will use context
managers to define behavior that occurs before, between, and after sections of the experiment. One may want to open
external resources (e.g., a sound file) at the beginning of each session, and close them afterward, for example. Another
common use case would be to offer a break between blocks.

The most verbose way to create a context manager is to make a class that contains the magic methods __enter__
and __exit__ with “before” and “after” behavior, respectively. See Context Manager Types.

A much more convenient way is to use the contextlib.contextmanager decorator in the standard library. See
the documentation for details, but it works like this: first you code the “before” behavior, then the keyword yield,
then the “after” behavior. Here is an example context manager that offers a break between blocks:

from contextlib import contextmanager

@contextmanager
def offer_break(experiment, section):

Don't need to offer a break before the first block.
if section.data['block'] > 1:

input('Take a break if you would like.\nPress ENTER when you are ready to
→˓continue.')

5.1. Contents 25

https://docs.python.org/3/library/collections.html#collections.ChainMap
https://docs.python.org/3/library/pickle.html#pickle-picklable
https://docs.python.org/3/library/pickle.html#pickle-picklable
https://docs.python.org/3/reference/datamodel.html#context-managers
https://docs.python.org/3/library/stdtypes.html#typecontextmanager
https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager

experimentator Documentation, Release 0.3.2

yield
print('Block {} completed.'.format(section.data['block']))

As you see, the signature of a context manager is the same as the signature of a function callback. All the same data
in the Experiment and ExperimentSection objects are also available to context managers.

Note: In the above example, we could make the offer_break function work on any level of the experiment. Every
ExperimentSection stores its level name in the attribute level. If we replace section.data['block']
with section.data[section.level] (we’d want to change the print message as well), then we could use
offer_break at multiple levels.

Context-manager callbacks have the same signature as regular function callbacks, and are the added the same way.
The only exception is to pass the keyword argument is_context=True to Experiment.add_callback.

With both types of callback, pass the level name to Experiment.add_callback. Continuing the previous ex-
ample:

experiment.add_callback('block', offer_break, is_context=True)

If you are using the context manager to close resources, it may be a good idea to use a try-finally block (see Defining
Clean-up Actions) to ensure that the resource is still closed in the case of an exception occurring. Here is an example
that loads audio using the library pyglet:

from contextlib import contextmanager
import pyglet

@contextmanager
def load_audio(experiment, section):

player = pyglet.media.Player()
source = pyglet.media.load('background_music.mp3')

Make the Player available to other callbacks by saving it in session_data.
experiment.session_data['player'] = player

try:
Run the section.
yield

finally:
This block will run even if an error occurs during the try block.
If no error occurs, it will run after the section ends.
player.delete()

Note: This example is just for illustration. Pyglet is actually smart enough to delete player for you when the
Python interpreter exits.

An alternative to manually editing Experiment.session_data is to put objects after the yield keyword. Any-
thing yielded by a context manager is stored in experiment.session_data[level_name] for the duration
of the session. In the above example, if we have yield player, then we can access player from other callbacks
as experiment.session_data['session'] (assuming load_audio is set as the context manager of the
level 'session').

26 Chapter 5. License

https://docs.python.org/3/tutorial/errors.html#tut-cleanup
https://docs.python.org/3/tutorial/errors.html#tut-cleanup
http://pyget.org

experimentator Documentation, Release 0.3.2

5.1.3 Command-line interface

You’ve generated your experiment, now what? A major feature of experimentator is that it automatically turns your
experiment into a command-line program, via the command exp. The general format for running experimentator
commands is:

exp COMMAND <exp-file> OPTIONS

The available commands are run, resume, and export. Additionally, exp --help (or -h) will show the usage
information, and exp --version will print experimentator’s version number.

Commands

Here is the abridged usage message:

exp run [options] <exp-file> (--next=<level> [--not-finished] | (<level> <n>)... [-
→˓-from=<n>])
exp resume [options] <exp-file> (<level> | (<level> <n>)...)
exp export <exp-file> <data-file> [--no-index-label --delim=<sep> --skip=<columns>

→˓--float=<format> --nan=<rep>]
exp -h | --help
exp --version

Don’t fear, an in-depth explanation follows.

run

The central command is run. There are a few ways to call it.

run –next

To run the first section at <level> that hasn’t been started:

exp run <exp-file> --next <level>

For example, to run the next participant from example.exp:

exp run example.exp --next participant

To run the next participant that hasn’t been finished (as opposed to the next that hasn’t started, the default):

exp run example.exp --next participant --not-finished

run <level> <n>

To run a specific section:

exp run <exp-file> (<level> <n>)...

The elipsis means that the previous element (the pair <level> <n>) can be repeated any number of times. For
example, to run the second session of the third participant:

5.1. Contents 27

experimentator Documentation, Release 0.3.2

exp run example.exp participant 3 session 2

run –from

In either version of run, you can add the --from <n> option to start at a specific section. For example, to run the
second session of the third participant, starting at the second block:

exp run example.exp participant 3 session 2 --from 2

<n> can also be a comma-separated list of integers. To start at the fourth trial of the second block:

exp run example.exp participant 3 session 2 --from 2,4

--from=<n> works the same as the from_section parameter to run_experiment_section; see documen-
tation for that method for details.

run options

Here is the full set of options for the run command:

-d, --debug Set logging level to DEBUG.

-o <options> Pass <options> to the experiment and save it as string in Experi-
ment.session_data[‘options’].

--demo Don’t save data.

--not-finished Run the first <level> that hasn’t finished (rather than first that hasn’t
started).

--skip-parents Don’t enter context of parent levels.

--from=<n> Start running at child number <n> of the specified section. <n> can
also be a comma-separated list of ints; see run_experiment_section
for details (specifically, –from=<n> works like the parameter
from_section).

resume

resume is similar to run. There is nothing resume can do that run cannot, but resume makes resuming inter-
rupted session easier. There are two ways to call it.

If you only pass a level, experimentator will try to resume the first section at that level that has been started but not
finished. The syntax is:

exp resume <exp-file> <level>

For example, to resume the first block that has been started but not finished:

exp resume example.expblock

One can also use specific section numbers with resume:

exp resume <exp-file> (<level> <n>)...

28 Chapter 5. License

experimentator Documentation, Release 0.3.2

The specified section must have been started but not finished. For example:

exp resume example.expparticipant 3 session 2

The difference between the above example and using run is that with resume, experimentator will automatically
start at the appropriate place; with run, experimentator will start at the beginning of the section (unless an explicit
starting point is passed with --from).

resume takes the same options as run.

export

export generates a text file with the experiment’s data. Its basic syntax is:

exp export <exp-file> <data-file>

This one should be straightforward, but here is an example anyway:

exp export example.expexample.csv

Its associated options:

--no-index-label Don’t put column labels on index columns (e.g. participant, trial),
for easier importing into R.

--delim=<sep> Field delimiter [default: ,].

--skip=<columns> Comma-separated list of columns to skip.

--float=<format> Format string for floating point numbers.

--nan=<rep> Missing data representation.

See pandas.DataFrame.to_csv for details on these options.

Note: If your experiment has any complex data structures (e.g., a timeseries for every trial), it is not recommended
to use the export command, as this will create an unparseable mess. Instead, access your data programmatically
through the Experiment.dataframe attribute.

5.1.4 API reference

Experiment

class experimentator.Experiment(tree, data=None, has_started=False, has_finished=False,
_children=None, filename=None, callback_by_level=None,
callback_type_by_level=None, session_data=None, experi-
ment_data=None, _callback_info=None)

Bases: experimentator.section.ExperimentSection

An ExperimentSection subclass that represents the largest ‘section’ of the experiment; that is, the entire
experiment. Functionality added on top of ExperimentSection includes various constructors, saving to
disk, and management of callbacks.

To create a new experiment, rather than instantiating directly it is recommended to use one of the constructor
methods:

5.1. Contents 29

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html#pandas.DataFrame.to_csv

experimentator Documentation, Release 0.3.2

• Experiment.new

• Experiment.from_dict

• Experiment.from_yaml_file

• Experiment.within_subjects

• Experiment.blocked

• Experiment.basic

Attributes

tree (DesignTree) The DesignTree instance defining the experiment’s hierarchy.
file-
name

(str) The file location where the Experiment will be pickled.

call-
back_by_level

(dict) A dictionary, mapping level names to functions or With Statement Context Managers (e.g.,
generator functions decorated with contextlib.contextmanager). Defines behavior to run
at each section (for functions) or before and/or after each section (for context managers) at the asso-
ciated level.

call-
back_type_by_level

(dict) A dictionary mapping level names to either the string 'context' or 'function'. This
keeps track of which callbacks in Experiment.callback_by_level are context managers.

ses-
sion_data

(dict) A dictionary where temporary data can be stored, persistent only within one session of the
Python interpreter. This is a good place to store external resources that aren’t picklable; external
resources, for example, can be loaded in a context-manager callback and stored here. In addition,
anything returned by the __exit__ method of a context-manager callback will be stored here, with
the callback’s level name as the key. This dictionary is emptied before saving the Experiment to
disk.

ex-
peri-
ment_data

(dict) A dictionary where data can be stored that is persistent across Python sessions. Everything
stored here must be picklable.

add_callback(level, callback, *args, is_context=False, func_module=None, func_name=None,
**kwargs)

Add a callback to run at a certain level.

A callback can be either a regular function, or a context-manager. The latter is useful for defining code to
run at the start and end of every section at the level. For example, a block context manager could specify
behavior that occurs before every trial in the block, and behavior that occurs after every trial in the block.
See contextlib for various ways to create context managers, and experimentator’s context-manager
docs for more details.

Any value returned by the __enter__ method of a context manager will be stored in Experiment.
session_data under the key level.

If the callback is not a context manager, it should return a dictionary (or nothing), which is automatically
passed to ExperimentSection.add_data. In theory, it should map dependent-variable names to
results. See the callback docs for more details.

Parameters level : str

Which level of the hierarchy to manage.

callback : function or context-manager

The callback should have the signature callback(experiment, section,

*args, **kwargs) where experiment and section are the current Experiment

30 Chapter 5. License

https://docs.python.org/3/reference/datamodel.html#context-managers
https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager
https://docs.python.org/3/library/pickle.html#pickle-picklable
https://docs.python.org/3/library/stdtypes.html#typecontextmanager
https://docs.python.org/3/library/stdtypes.html#typecontextmanager
https://docs.python.org/3/library/pickle.html#pickle-picklable
https://docs.python.org/3/library/stdtypes.html#typecontextmanager
https://docs.python.org/3/library/contextlib.html#module-contextlib
https://docs.python.org/3/library/stdtypes.html#typecontextmanager

experimentator Documentation, Release 0.3.2

and ExperimentSection instances, respectively, and args and kwargs are arbitrary
arguments passed to this method.

*args

Any arbitrary positional arguments to be passed to callback.

func_module : str, optional

func_name : str, optional

These two arguments specify where the given function should be imported from in
future Python sessions (i.e., from <func_module> import <func_name>).
Usually, this is figured out automatically by introspection; these arguments are provided
for the rare situation where introspection fails.

**kwargs

Any arbitrary keyword arguments to be passed to callback.

add_data(data)
Update the ExperimentSection.data ChainMap. This data will apply to this section and all child
sections. This can be used, for example, to manually record a participant’s age.

Parameters data : dict

Elements to be added to ExperimentSection.data.

all_subsections(**section_numbers)
Find all subsections in the experiment matching the given section numbers.

Yields specified ExperimentSection instances. The yielded sections will be at the lowest level given
in section_numbers. If levels not in section_numbers are encountered before reaching its lowest level, all
sections will be descended into.

Parameters **section_numbers

Keyword arguments describing what subsections to find. Keys are level names, values
are ints or sequences of ints.

See also:

experimentator.section.ExperimentSection.subsection

Examples

Assuming the levels of the experiment saved in 'example.exp' are ('participant',
'session', 'block', 'trial'):

>>> from experimentator import Experiment
>>> exp = Experiment.load('example.exp')

Get the first session of each participant:

>>> all_first_sessions = list(exp.all_subsections(session=1))

Get the second trial of the first block in each session:

>>> trials = list(exp.all_subsections(block=1, trial=2))

Get the first three trials of each block in the first session of each participant:

5.1. Contents 31

https://docs.python.org/3/library/collections.html#collections.ChainMap

experimentator Documentation, Release 0.3.2

>>> more_trials = list(exp.all_subsections(session=1, trial=[1, 2, 3]))

append_child(data, tree=None, to_start=False, _renumber=True)
Create a new ExperimentSection (and its descendants) and append it as a child of the current
ExperimentSection.

Parameters data : dict

Data to be included in the new section’s ExperimentSection.data ChainMap.
Should include values of IVs at the section’s level, for example.

tree : DesignTree, optional

If given, the section will be appended from the top level of tree. If not passed, the tree
of the current section will be used. Note that this does not affect IV values; IV values
must still be included in data.

to_start : bool, optional

If True, the new ExperimentSection will be appended to the beginning of the
current section. If False (the default), it will be appended to the end.

Notes

After calling this method, the section numbers in the children’s ExperimentSection.data attributes
will be automatically replaced with the correct numbers.

append_design_tree(tree, to_start=False, _renumber=True)
Append all sections associated with the top level of a DesignTree (and therefore also create descendant
sections) to the ExperimentSection.

Parameters tree : DesignTree

The tree to append.

to_start : bool, optional

If True, the sections will be inserted at the beginning of the section. If False (the default),
they will be appended to the end.

Notes

After calling this method, the section numbers in the children’s ExperimentSection.data attributes
will be automatically replaced with the correct numbers.

as_graph()
Build a networkx.DiGraph out of the experiment structure, starting at this section. Nodes are sections
and graphs are parent-child relations. Node data are non-duplicated entries in ExperimentSection.
data.

Returns networkx.DiGraph

classmethod basic(levels, ivs_by_level, design_matrices_by_level=None, order-
ing_by_level=None, filename=None)

Construct a homogeneously-organized Experiment, with arbitrary levels but only one Design at each
level, and the same structure throughout its hierarchy.

Parameters levels : sequence of str

Names of the levels of the experiment

32 Chapter 5. License

https://docs.python.org/3/library/collections.html#collections.ChainMap

experimentator Documentation, Release 0.3.2

ivs_by_level : dict

Dictionary specifying the IVs and their possible values at every level. The keys are be
the level names, and the values are lists of the IVs at that level, specified in the form
of tuples with the first element being the IV name and the second element a list of its
possible values. Alternatively, the IVs at each level can be specified in a dictionary. See
IV docs for more on specifying IVs.

design_matrices_by_level : dict, optional

Specify the design matrix for any levels. Keys are level names; values are design ma-
trices. Any levels without a design matrix will be fully crossed. See design matrix docs
for details.

ordering_by_level : dict, optional

Specify the ordering for each level. Keys are level names; values are instance ob-
jects from experimentator.order. For any levels without an order specified,
Shuffle will be used.

filename : str, optional

File location to save the experiment.

Returns Experiment

classmethod blocked(trial_ivs, n_participants, design_matrices=None, orderings=None,
block_ivs=None, filename=None)

Create a blocked within-subjects Experiment, in which all the IVs are at either the trial level or the
block level.

Parameters trial_ivs : list or dict

A list of the IVs to define at the trial level, specified in the form of tuples with the
first element being the IV name and the second element a list of its possible values.
Alternatively, the IVs at each level can be specified in a dictionary. See the IV docs
more on specifying IVs.

n_participants : int

Number of participants to initialize. If a NonAtomicOrdering is used, this is the
number of participants per order.

design_matrices : dict, optional

Design matrices for the experiment. Keys are 'trial' and 'block'; values are the
respective design matrices (if any). If not specified, IVs will be fully crossed. See the
design matrix docs for details.

orderings : dict, optional

Dictionary with keys of 'trial' and 'block'. Each value should be an instance of
the class Ordering or one of its subclasses, specifying how the trials will be ordered
If not specified, Shuffle will be used.

block_ivs : list or dict, optional

IVs to define at the block level. See IV docs for more on specifying IVs.

filename : str, optional

File location to save the experiment.

Returns Experiment

5.1. Contents 33

experimentator Documentation, Release 0.3.2

Notes

For blocks to have any effect, you should either define at least one IV at the block level or use the ordering
Ordering(n) to create n blocks for every participant.

breadth_first_search(key)
Breadth-first search starting from here. Returns the entire search path.

Parameters key : func

Function that returns True or False when passed an ExperimentSection.

Returns list of ExperimentSection

depth_first_search(key, path_key=None, _path=None)
Depth-first search starting from here. Returns the entire search path.

Parameters key : func

Function that returns True or False when passed an ExperimentSection.

path_key : func, optional

Function that returns True or False when passed an ExperimentSection. If given,
the search will proceed only via sections for which path_key returns True.

Returns list of ExperimentSection

export_data(filename, skip_columns=None, **kwargs)
Export Experiment.dataframe in .csv format.

Parameters filename : str

A file location where the data should be saved.

skip_columns : list of str, optional

Columns to skip.

**kwargs

Arbitrary keyword arguments to pass to pandas.DataFrame.to_csv.

Notes

This method is not recommended for experiments with compound data types, for example an experiment
which stores a time series for every trial. In those cases it is recommended to write a custom script that
parses the Experiment.dataframe attribute as desired, or use the skip_columns option to skip any
compound columns.

find_first_not_run(at_level, by_started=True)
Search the experimental hierarchy, and return the first descendant ExperimentSection at at_level that
has not yet been run.

Parameters at_level : str

Which level to search.

by_started : bool, optional

If True (default), returns the first section that has not been started. Otherwise, finds the
first section that has not finished.

Returns ExperimentSection

34 Chapter 5. License

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html#pandas.DataFrame.to_csv

experimentator Documentation, Release 0.3.2

find_first_partially_run(at_level)
Search the experimental hierarchy, and return the first descendant ExperimentSection at at_level that
has been started but not finished.

Parameters at_level : str

Which level to search.

Returns ExperimentSection

classmethod from_dict(spec)
Construct an Experiment based on a dictionary specification.

Parameters spec : dict

spec should have, at minimum, a key named 'design'. The value of this key specifies
the DesignTree. See DesignTree.from_spec for details. The value of the key
'filename' or 'file', if one exists,is saved in Experiment.filename. All
other fields are saved in Experiment.experiment_data.

Returns Experiment

See also:

experimentator.Experiment.from_yaml_file

classmethod from_yaml_file(filename)
Construct an Experiment based on specification in a YAML file. Requires PyYAML.

Parameters filename : str

YAML file location. The YAML should specify a dictionary matching the specification
of Experiment.from_dict.

Returns Experiment

get_next_tree()
Get a tree to use for creating child ExperimentSection instances.

Returns DesignTree

static load(filename)
Load an experiment from disk.

Parameters filename : str

Path to a file generated by Experiment.save.

Returns Experiment

classmethod new(tree, filename=None)
Make a new Experiment.

Parameters tree : DesignTree

A DesignTree instance defining the experiment hierarchy.

filename : str, optional

A file location where the Experiment will be saved.

parent(section)
Find the parent of a section.

Parameters section : ExperimentSection

The section to find the parent of.

5.1. Contents 35

http://pyyaml.org/wiki/PyYAML

experimentator Documentation, Release 0.3.2

Returns ExperimentSection

parents(section)
Find all parents of a section, in top-to-bottom order.

Parameters section : ExperimentSection

The section to find the parents of.

Returns list of ExperimentSection

resume_section(section, **kwargs)
Rerun a section that has been started but not finished, starting where running last left off.

Parameters section : ExperimentSection

The section to resume.

**kwargs

Keyword arguments to pass to Experiment.run_section.

Notes

The wrapper function run_experiment_section should be used instead of this method, if possible.

run_section(section, demo=False, parent_callbacks=True, from_section=None)
Run a section and all its descendant sections. Saves the results in the data attribute of each lowest-level
ExperimentSection.

Parameters section : ExperimentSection

The section to be run.

demo : bool, optional

Data will only be saved if demo is False (the default).

parent_callbacks : bool, optional

If True (the default), all parent callbacks will be called.

from_section : int or list of int, optional

Which section to start running from. If a list is passed, it specifies where to
start running on multiple levels. For example, assuming the experiment hierarchy
is ('participant', 'session', 'block', 'trial'), this would start
from the fifth trial of the second block (of the first participant’s second session):

>>> exp = Experiment.load('example.exp')
>>> exp.run_section(exp.subsection(participant=1, session=2),
→˓from_section=[2, 5])

Notes

The wrapper function run_experiment_section should be used instead of this method, if possible.

save(filename=None)
Save the Experiment to disk.

Parameters filename : str, optional

36 Chapter 5. License

experimentator Documentation, Release 0.3.2

If specified, overrides Experiment.filename.

subsection(**section_numbers)
Find a single, descendant ExperimentSection based on section numbers.

Parameters **section_numbers

Keyword arguments describing which subsection to find Must include every level higher
than the desired section.

Returns ExperimentSection

See also:

experimentator.section.ExperimentSection.all_subsections

Examples

Assuming the levels of the experiment saved in 'example.exp' are ('participant',
'session', 'block', 'trial'), this will return the third block of the second participant’s first
session:

>>> from experimentator import Experiment
>>> exp = Experiment.load('example.exp')
>>> some_block = exp.subsection(participant=2, session=1, block=3)

walk()
Walk the tree depth-first, starting from here. Yields this section and every descendant section.

classmethod within_subjects(ivs, n_participants, design_matrix=None, ordering=None, file-
name=None)

Create a within-subjects Experiment, with all the IVs at the 'trial' level.

Parameters ivs : list or dict

A list of the experiment’s IVs, specified in the form of tuples with the first element being
the IV name and the second element a list of its possible values. Alternatively, the IVs
at each level can be specified in a dictionary. See the IV docs more on specifying IVs.

n_participants : int

Number of participants to initialize.

design_matrix : array-like, optional

Design matrix for the experiment. If not specified, IVs will be fully crossed. See the
design matrix docs for more details.

ordering : Ordering, optional

An instance of the class Ordering or one of its subclasses, specifying how the trials
will be ordered. If not specified, Shuffle will be used.

filename : str, optional

File location to save the experiment.

Returns Experiment

5.1. Contents 37

experimentator Documentation, Release 0.3.2

Helper functions

experimentator.run_experiment_section(experiment, section_obj=None, demo=False,
resume=False, parent_callbacks=True,
from_section=1, session_options=”, **sec-
tion_numbers)

Run an experiment from a file or an Experiment instance, and save it. If an exception is encountered, the
Experiment will be backed up and saved.

Parameters experiment : str or Experiment

File location where an Experiment instance is pickled, or an Experiment instance.

demo : bool, optional

If True, data will not be saved and sections will not be marked as run.

resume: bool, optional

If True, the specified section will be resumed (started automatically where it left off).

parent_callbacks : bool, optional

If True (the default), all parent callbacks will be called.

section_obj : ExperimentSection, optional

The section of the experiment to run. Alternatively, the section can be specified using
**section_numbers.

from_section : int or list of int, optional

Which section to start running from. If a list is passed, it specifies where to start running
on multiple levels. See the example below.

session_options : str, optional

Pass an experiment-specific options string to be stored in Experiment.
session_data under the key 'options'.

**section_numbers

Keyword arguments describing how to descend the experiment hierarchy to find the
section to run. See the example below.

Examples

A simple example:

>>> exp = Experiment.load('example.exp')
>>> run_experiment_section(exp, exp.subsection(participant=1, session=2))

Equivalently:

>>> run_experiment_section(exp, participant=1, session=2)

To demonstrate from_section, assuming the experiment hierarchy is ('participant', 'session',
'block', 'trial'), this would start from the second block:

>>> run_experiment_section(exp, participant=1, session=2, from_section=2)

38 Chapter 5. License

experimentator Documentation, Release 0.3.2

To start from the fifth trial of the second block:

>>> run_experiment_section(exp, participant=1, session=2, from_section=[2, 5])

experimentator.export_experiment_data(exp_filename, data_filename, **kwargs)
Reads a pickled Experiment instance and saves its data in .csv format.

Parameters exp_filename : str

The file location where an Experiment instance is pickled.

data_filename : str

The file location where the data will be written.

skip_columns : list of str, optional

Data columns to skip.

**kwargs

Arbitrary keyword arguments passed through to pandas.DataFrame.to_csv.

Notes

This shortcut function is not recommended for experiments with compound data types, for example an exper-
iment which stores a time series for every trial. In such cases it is recommended to write a custom script that
parses Experiment.dataframe as desired (or use the skip_columns option to ignore the compound data).

ExperimentSection

class experimentator.section.ExperimentSection(tree, data=None, has_started=False,
has_finished=False, _children=None)

A section of the experiment, at any level of the hierarchy. Single trials and groups of trials (blocks, ses-
sions, participants, etc.) are represented as ExperimentSection instances. A complete experiment con-
sists of ExperimentSection instances arranged in a tree. The root element should be an Experiment
(a subclass of ExperimentSection); the rest of the sections can be reached via its descendants (see be-
low on the sequence protocol). A new ExperimentSection instance is automatically populated with
ExperimentSection descendants according to the DesignTree passed to its constructor.

ExperimentSection implements Python’s sequence protocol; its contents are ExperimentSection
instances at the level below. In other words, children can be accessed using the [index] notation,
as well as with slices ([3:6]) or iteration (for section in experiment_section). However,
ExperimentSection breaks the Python convention of 0-based indexing, using 1-based indexing to match
the convention in experimental science.

The direct constructor is used to create an arbitrary ExperimentSection (i.e., possibly reloading an in-
progress section), whereas ExperimentSection.new creates a section that hasn’t yet started.

Notes

Use 1-based indexing to refer to ExperimentSection children, both when when using indexing or slicing
with an ExperimentSection, and when identifying sections in keyword arguments to methods such as
ExperimentSection.subsection. This better corresponds to the language commonly used by scientists
to identify participants, trials, etc.

5.1. Contents 39

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html#pandas.DataFrame.to_csv

experimentator Documentation, Release 0.3.2

Attributes

tree (DesignTree)
data (ChainMap)
description (str) The name and number of the section (e.g., 'trial 3').
dataframe (DataFrame) All data associated with the ExperimentSection and its

descendants.
heteroge-
neous_design_iv_name

(str) IV name determining which branch of the DesignTree to follow.

level (str) The level of the hierarchy at which this section lives.
levels (list of str) Level names below this section.
local_levels (set) Level names of this section’s children. Usually a single-element set.
is_bottom_level (bool) If true, this is the lowest level of the hierarchy.
is_top_level (bool) If true, this is the highest level of the hierarchy (likely an

Experiment).
has_started: bool Whether this section has started to be run.
has_finished (bool) Whether this section has finished running.

add_data(data)
Update the ExperimentSection.data ChainMap. This data will apply to this section and all child
sections. This can be used, for example, to manually record a participant’s age.

Parameters data : dict

Elements to be added to ExperimentSection.data.

all_subsections(**section_numbers)
Find all subsections in the experiment matching the given section numbers.

Yields specified ExperimentSection instances. The yielded sections will be at the lowest level given
in section_numbers. If levels not in section_numbers are encountered before reaching its lowest level, all
sections will be descended into.

Parameters **section_numbers

Keyword arguments describing what subsections to find. Keys are level names, values
are ints or sequences of ints.

See also:

experimentator.section.ExperimentSection.subsection

Examples

Assuming the levels of the experiment saved in 'example.exp' are ('participant',
'session', 'block', 'trial'):

>>> from experimentator import Experiment
>>> exp = Experiment.load('example.exp')

Get the first session of each participant:

>>> all_first_sessions = list(exp.all_subsections(session=1))

Get the second trial of the first block in each session:

40 Chapter 5. License

https://docs.python.org/3/library/collections.html#collections.ChainMap
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/collections.html#collections.ChainMap

experimentator Documentation, Release 0.3.2

>>> trials = list(exp.all_subsections(block=1, trial=2))

Get the first three trials of each block in the first session of each participant:

>>> more_trials = list(exp.all_subsections(session=1, trial=[1, 2, 3]))

append_child(data, tree=None, to_start=False, _renumber=True)
Create a new ExperimentSection (and its descendants) and append it as a child of the current
ExperimentSection.

Parameters data : dict

Data to be included in the new section’s ExperimentSection.data ChainMap.
Should include values of IVs at the section’s level, for example.

tree : DesignTree, optional

If given, the section will be appended from the top level of tree. If not passed, the tree
of the current section will be used. Note that this does not affect IV values; IV values
must still be included in data.

to_start : bool, optional

If True, the new ExperimentSection will be appended to the beginning of the
current section. If False (the default), it will be appended to the end.

Notes

After calling this method, the section numbers in the children’s ExperimentSection.data attributes
will be automatically replaced with the correct numbers.

append_design_tree(tree, to_start=False, _renumber=True)
Append all sections associated with the top level of a DesignTree (and therefore also create descendant
sections) to the ExperimentSection.

Parameters tree : DesignTree

The tree to append.

to_start : bool, optional

If True, the sections will be inserted at the beginning of the section. If False (the default),
they will be appended to the end.

Notes

After calling this method, the section numbers in the children’s ExperimentSection.data attributes
will be automatically replaced with the correct numbers.

as_graph()
Build a networkx.DiGraph out of the experiment structure, starting at this section. Nodes are sections
and graphs are parent-child relations. Node data are non-duplicated entries in ExperimentSection.
data.

Returns networkx.DiGraph

breadth_first_search(key)
Breadth-first search starting from here. Returns the entire search path.

5.1. Contents 41

https://docs.python.org/3/library/collections.html#collections.ChainMap

experimentator Documentation, Release 0.3.2

Parameters key : func

Function that returns True or False when passed an ExperimentSection.

Returns list of ExperimentSection

depth_first_search(key, path_key=None, _path=None)
Depth-first search starting from here. Returns the entire search path.

Parameters key : func

Function that returns True or False when passed an ExperimentSection.

path_key : func, optional

Function that returns True or False when passed an ExperimentSection. If given,
the search will proceed only via sections for which path_key returns True.

Returns list of ExperimentSection

find_first_not_run(at_level, by_started=True)
Search the experimental hierarchy, and return the first descendant ExperimentSection at at_level that
has not yet been run.

Parameters at_level : str

Which level to search.

by_started : bool, optional

If True (default), returns the first section that has not been started. Otherwise, finds the
first section that has not finished.

Returns ExperimentSection

find_first_partially_run(at_level)
Search the experimental hierarchy, and return the first descendant ExperimentSection at at_level that
has been started but not finished.

Parameters at_level : str

Which level to search.

Returns ExperimentSection

get_next_tree()
Get a tree to use for creating child ExperimentSection instances.

Returns DesignTree

classmethod new(tree, data=None)
Create a new ExperimentSection.

Parameters tree : DesignTree

Describes the design of the experiment hierarchy.

data : ChainMap

All data to be associated with the ExperimentSection, including the values of in-
dependent variables, the section numbers indicating the section’s location in the exper-
iment, and any results associated with this section, arising from either the run callback
of the Experiment or from the method ExperimentSection.add_data. data
should be a collections.ChainMap, which behaves like a dictionary but has a
hierarchical organization such that children can access values from the parent but not
vice-versa.

42 Chapter 5. License

https://docs.python.org/3/library/collections.html#collections.ChainMap
https://docs.python.org/3/library/collections.html#collections.ChainMap

experimentator Documentation, Release 0.3.2

parent(section)
Find the parent of a section.

Parameters section : ExperimentSection

The section to find the parent of.

Returns ExperimentSection

parents(section)
Find all parents of a section, in top-to-bottom order.

Parameters section : ExperimentSection

The section to find the parents of.

Returns list of ExperimentSection

subsection(**section_numbers)
Find a single, descendant ExperimentSection based on section numbers.

Parameters **section_numbers

Keyword arguments describing which subsection to find Must include every level higher
than the desired section.

Returns ExperimentSection

See also:

experimentator.section.ExperimentSection.all_subsections

Examples

Assuming the levels of the experiment saved in 'example.exp' are ('participant',
'session', 'block', 'trial'), this will return the third block of the second participant’s first
session:

>>> from experimentator import Experiment
>>> exp = Experiment.load('example.exp')
>>> some_block = exp.subsection(participant=2, session=1, block=3)

walk()
Walk the tree depth-first, starting from here. Yields this section and every descendant section.

Design

class experimentator.Design(ivs=None, design_matrix=None, ordering=None, ex-
tra_data=None)

Design instances specify the experimental design at one level of the experimental hierarchy. They guide the
creation of ExperimentSection instances by parsing design matrices or crossing independent variables
(IVs).

Parameters ivs : dict or list of tuple, optional

Independent variables can be specified as a dictionary mapping names to possible val-
ues, or as a list of (name, values) tuples. If an IV takes continuous values, use
None for its levels. This only works when specifying values using design_matrix. See
the IV docs for more information.

design_matrix : array-like, optional

5.1. Contents 43

experimentator Documentation, Release 0.3.2

A numpy array (or convertible, e.g. a list-of-lists) representing a design matrix spec-
ifying how IV values should be grouped to form conditions. When no design_matrix
is passed, IVs are fully crossed. See the design matrix docs for more details. Note
that a design matrix may also specify the order of the conditions. For this reason, the
default ordering changes from Shuffle to Ordering, preserving the order of the
conditions.

ordering : Ordering, optional

An instance of Ordering or one of its subclasses defining the behavior for dupli-
cating and ordering the conditions of the Design. The default is Shuffle unless a
design_matrix is passed.

extra_data : dict, optional

Items from this dictionary will be included in the data attribute of any
ExperimentSection instances created with this Design.

See also:

experimentator.order, experimentator.DesignTree

Examples

>>> from experimentator.order import Shuffle
>>> design = Design(ivs={'side': ['left', 'right'], 'difficulty': ['easy', 'hard
→˓']}, ordering=Shuffle(2))
>>> design.first_pass()
IndependentVariable(name=(), values=())
>>> design.get_order()
[{'difficulty': 'easy', 'side': 'left'},
{'difficulty': 'hard', 'side': 'left'},
{'difficulty': 'easy', 'side': 'left'},
{'difficulty': 'hard', 'side': 'right'},
{'difficulty': 'easy', 'side': 'right'},
{'difficulty': 'easy', 'side': 'right'},
{'difficulty': 'hard', 'side': 'left'},
{'difficulty': 'hard', 'side': 'right'}]

Attributes

iv_names (list of str)
iv_values (list of tuple)
design_matrix (array-like)
extra_data (dict)
ordering (Ordering)
heteroge-
neous_design_iv_name

(str) The IV name that triggers a heterogeneous (i.e., branching) tree structure when
it is encountered. 'design' by default.

is_heterogeneous (bool) True if this Design is the lowest level before the tree structure diverges.
branches (dict) The IV values corresponding to named heterogeneous branches in the tree

structure following this Design.

first_pass()
Initialize design.

44 Chapter 5. License

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

experimentator Documentation, Release 0.3.2

Initializes the design by parsing the design matrix or crossing the IVs If a NonAtomicOrdering is
used, an additional IV will be returned which should be incorporated into the design one level up in the
experimental hierarchy. For this reason, the first_pass methods in a hierarchy of Design instances
should be called in reverse order, from bottom up. Use a DesignTree to ensure this occurs properly.

Returns iv_name : str or tuple

The name of the IV, for non-atomic orderings. Otherwise, an empty tuple.

iv_values : tuple

The possible values of the IV. Empty for atomic orderings.

classmethod from_dict(spec)
Construct a Design instance from a specification based on dictionaries (e.g., parsed from a YAML file).

Parameters spec : dict

A dictionary containing some of the following keys (all optional): 'name', the name
of the level; 'ivs', 'design_matrix', 'extra_data', keyword arguments to
the Design constructor; 'order' or 'ordering', a string, dictionary, or list de-
termining the ordering method; and 'n' or 'number', the number argument to the
specified ordering. A dictionary containing any fields not otherwise used is passed to
the Design constructor as the extra_data argument. See the description in the
docs for more information.

Returns name : str

Only returned if spec contains a field 'name'.

design : Design

See also:

experimentator.DesignTree.from_spec

Examples

>>> design_spec = {
...'name': 'block',
...'ivs': {'speed': [1, 2, 3], 'size': [15, 30]},
...'ordering': 'Shuffle',
...'n': 3}
>>> Design.from_dict(design_spec)
Level(name='block', design=Design(ivs=[('speed', [1, 2, 3]), ('size', [15,
→˓30])], design_matrix=None, ordering=Shuffle(number=3, avoid_repeats=False),
→˓extra_data={}))

static full_cross(iv_names, iv_values)
Perform a full factorial cross of the independent variables. Yields dictionaries, each describing one condi-
tion, a mapping from IV names to IV values. One dictionary is yielded for every possible combination of
IV values.

Parameters iv_names : list of str

Names of IVs.

iv_values : list of list

Each element defines the possible values of an IV. Must be the same length as iv_names.
Its elements must be hashable.

5.1. Contents 45

experimentator Documentation, Release 0.3.2

get_order(data=None)
Order the conditions.

Returns list of dict

A list of dictionaries, each specifying a condition (a mapping from IV names to values).

update(names, values)
Add additional independent variables to the Design. This will have no effect after Design.
first_pass has been called.

Parameters names : list of str

Names of IVs to add.

values : list of list

For each IV, a list of possible values.

DesignTree

class experimentator.DesignTree(levels_and_designs=None, other_designs=None,
branches=None)

A container for Design instances, describing the entire hierarchy of a basic Experiment. DesignTree
instances are iterators; calling next on one will return another DesignTree with the top level removed. In
this way, the entire experimental hierarchy can be created by recursively calling next.

Use DesignTree.new to create a new tree, the generic constructor is for instantiating trees whose attributes
have already been processed (i.e., reloading already-created trees).

Notes

Calling next on the last level of a heterogeneous DesignTree will return a dictionary of named
DesignTree instances (rather than a single DesignTree instance). The keys are the possible values of
the IV 'design' and the values are the corresponding DesignTree instances.

Attributes

levels_and_designs (list of tuple)
other_designs (dict)
branches (dict) Only those items from other_designs that follow directly from this tree.

add_base_level()
Adds a section to the top of the tree called '_base'. This makes the DesignTree suitable for con-
structing an Experiment.

Notes

The Experiment constructor calls this automatically, and this shouldn’t be called when appending a tree
to an existing Experiment, so there is no use case for manually calling this method.

46 Chapter 5. License

experimentator Documentation, Release 0.3.2

static first_pass(levels_and_designs)
Make a first pass of all designs in a DesignTree, from bottom to top. This calls Design.
first_pass on every Design instance in the tree in the proper order, updating designs when a new IV
is returned. This is necessary for non-atomic orderings because they modify the parent Design.

classmethod from_spec(spec)
Constructs a DesignTree instance from a specification (e.g., parsed from a YAML file).

spec [dict or list of dict] The DesignTree specification. A dictionary with keys as tree names and
values as lists of dictionaries. Each sub-dictionary should specify a Design according to Design.
from_dict. The main tree should be named 'main'. Other names are used for generating hetero-
geneous trees (see DesignTree docs). A homogeneous tree can be specified as a dictionary with
only a single key 'main', or directly as a list of dictionaries

Returns DesignTree

classmethod new(levels_and_designs, **other_designs)
Create a new DesignTree.

Parameters levels_and_designs : OrderedDict or list of tuple

This input defines the structure of the tree, and is either an OrderedDict or a list of 2-
tuples. Keys (or first element of each tuple) are level names. Values (or second element
of each tuple) are design specifications, in the form of either a Design instance, or a
list of Design instances to occur in sequence.

**other_designs

Named design trees, can be other DesignTree instances or suitable lev-
els_and_designs inputs (i.e., OrderedDict or list of tuples). These designs allow for
heterogeneous design structures (i.e. not every section at the same level has the same
Design). To make a heterogeneous DesignTree, use an IV named 'design' at
the level where the heterogeneity should occur. Values of this IV should be strings, each
corresponding to the name of a DesignTree from‘ other_designs‘. The value of the
IV 'design' at each section determines which DesignTree is used for children of
that section.

experimentator.order

This module contains the class Ordering and its descendants. These classes handle how unique conditions at
a particular experimental level are ordered and duplicated. Ordering instances should be passed directly to the
Design constructor; there is no reason to otherwise interact with them in normal use.

Of special note are non-atomic orderings: the class NonAtomicOrdering and its descendants. ‘’Non-atomic” here
means that the orderings between sections are not independent. A Shuffle ordering is atomic; the order in one
section is independent of the order in another. However, if one wants to ensure, for example, that possible block orders
are evenly distributed among participants (a counterbalanced design), the block orders within each partici-
pants are not independent. Each participant can decide its order of blocks only in the context of the other participants’
block orders. This means that the parent section must handle orderings (in the example of counterbalanced blocks,
the Experiment.base_section–the experiment itself, essentially–must tell each participant what block order
to use).

class experimentator.order.Ordering(number=1)
Bases: object

The base ordering class. It will keep conditions in the order they are defined by the Design instance (either
the order of rows in the design matrix, or a full factorial cross–the output of calling itertools.product on
the IV levels). Remember not to rely on the order of dictionary items. Therefore, if a specific order is desired,

5.1. Contents 47

https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/itertools.html#itertools.product

experimentator Documentation, Release 0.3.2

it is recommended to use a design matrix or an OrderedDict to define the IVs. See the IV docs for more
information.

Parameters number : int, optional

The number of times each unique condition should appear. The default is 1. If number
> 1, the entire order will be cycled (as opposed to repeating each condition within the
order).

first_pass(conditions)
Handle operations that should only be performed once, initializing the object before ordering conditions.
For Ordering, the only operation is duplication of the list of conditions (if Ordering.number > 1).
This methods should not be called manually.

Parameters conditions : sequence of dict

A list of conditions, where each condition is a dictionary mapping IV names to IV
values.

Returns iv_name : str or tuple

The name of the IV, for non-atomic orderings. Otherwise, an empty tuple.

iv_values : tuple

The possible values of the IV. Empty for atomic orderings.

get_order(data=None)
Get an order of conditions. For Ordering, always returns the same order.

Parameters data : dict, optional

A dictionary describing the data of the parent section. Unused for atomic orderings.

Returns list of dict

A list of conditions, where each condition is a dictionary mapping IV names to IV
values.

static possible_orders(conditions, unique=True)
Yield all possible orders of the conditions. Each order is a list of dictionaries, with each dictionary repre-
senting a condition.

Parameters conditions : sequence of dict

A list of conditions, where each condition is a dictionary mapping IV names to IV
values.

unique : bool, optional

If true (the default), will only return unique orders. If false, some identical orders will
be generated if conditions contains identical elements.

class experimentator.order.Shuffle(number=1, avoid_repeats=False)
Bases: experimentator.order.Ordering

This ordering randomly shuffles the conditions.

Parameters number : int, optional

Number of times each condition should appear (default=1). Conditions are duplicated
before shuffling.

avoid_repeats : bool, optional

If True (default is False), no identical conditions will appear back-to-back.

48 Chapter 5. License

https://docs.python.org/3/library/collections.html#collections.OrderedDict

experimentator Documentation, Release 0.3.2

get_order(data=None)
Get an order of conditions. For Shuffle, returns the conditions in a random order.

Parameters data : dict, optional

A dictionary describing the data of the parent section. Unused for atomic orderings.

Returns list of dict

A list of conditions, where each condition is a dictionary mapping IV names to IV
values.

class experimentator.order.NonAtomicOrdering(number=1)
Bases: experimentator.order.Ordering

This is a base class for non-atomic orderings, and is not meant to be directly instantiated. Non-atomic orderings
work by creating a new independent variable one level up. The IV name will start with an underscore, a
convention to avoid name clashes.

get_order(data=None)
Get an order of conditions.

Parameters data : dict, optional

A dictionary describing the data of the parent section.

Returns list of dict

A list of conditions, where each condition is a dictionary mapping IV names to IV
values.

iv
The IV associated with the non-atomic ordering. It will be added to the design one level up in the experi-
ment hierarchy.

Returns iv_name : str or tuple

The name of the IV, for non-atomic orderings. Otherwise, an empty tuple.

iv_values : seq

The possible values of the IV. Empty for atomic orderings.

class experimentator.order.CompleteCounterbalance(number=1)
Bases: experimentator.order.NonAtomicOrdering

In a complete counterbalance design, every unique ordering of the conditions appears the same numbers of
times.

Parameters number : int, optional

The number of times each condition should be duplicated. Note that conditions are
duplicated before determining the possible orderings.

Notes

The number of possible orderings can get very large very quickly. Therefore, a complete counterbalance
is not recommended for more than 3 conditions. The number of unique orderings can be determined by
factorial(number * k) // number**k, where k is the number of conditions (assuming all con-
ditions are unique). For example, with 5 conditions there are 120 possible orders; with 3 conditions and
number==2, there are 90 unique orders.

5.1. Contents 49

experimentator Documentation, Release 0.3.2

first_pass(conditions)
Handle operations that should only be performed once, initializing the object before ordering conditions.
For CompleteCounterbalance, all possible orders are determined. This method should not be called
manually.

Parameters conditions : sequence of dict

A list of conditions, where each condition is a dictionary mapping IV names to IV
values.

Returns iv_name : str or tuple

The name of the IV to be created one level up, 'counterbalance_order'.

iv_values : tuple

Values of the IV to be created one level up, integers each associated with an order of the
conditions.

class experimentator.order.Sorted(number=1, order=’both’)
Bases: experimentator.order.NonAtomicOrdering

Sorts the conditions based on the value of the IV defined at its level. This ordering can be non-atomic (if order
== 'both'), creating an IV with levels of 'ascending' and 'descending'. If order is 'ascending'
or 'descending', the ordering will be atomic (each section will be ordered the same way).

Parameters order : {‘both’, ‘ascending’, ‘descending’}, optional

The order to sort the sections. If 'both' (the default), half the sections will be created
in ascending order, and half in descending order, depending on the value of the new IV
'sorted_order'.

number : int, optional

The number of times each condition should appear.

Notes

To avoid ambiguity, Sorted can only be used at levels containing only one IV.

first_pass(conditions)
Handle operations that should only be performed once, initializing the object before ordering conditions.
For Sorted, the conditions are sorted on IV values.

Parameters conditions : sequence of dict

A list of conditions, where each condition is a dictionary mapping IV names to IV
values.

Returns iv_name : str or tuple

If order is 'both', the name of the IV to be created one level up, 'sorted_order'.
Otherwise, an empty tuple (denoting that no IV will be created).

iv_values : tuple

If order is 'both', values of the IV to be created one level up, integers each associated
with an order of the conditions. Otherwise, empty tuple.

get_order(data=None)
Get an order of conditions.

Parameters data : dict, optional

50 Chapter 5. License

experimentator Documentation, Release 0.3.2

A dictionary describing the data of the parent section.

Returns list of dict

A list of conditions, where each condition is a dictionary mapping IV names to IV
values.

class experimentator.order.LatinSquare(number=1, balanced=True, uniform=False)
Bases: experimentator.order.NonAtomicOrdering

Orders the conditions by constructing an NxN Latin square, where N is the number of unique conditions. A
Latin square is a matrix with each element appearing exactly once in each row and column. Each row represents
a different potential ordering of the conditions. This allows for balanced counterbalancing, in designs too large
to accommodate a complete counterbalance.

Parameters number : int, optional

The number of times the Latin square should be repeated (default=1). Duplication oc-
curs after constructing the square.

balanced : bool, optional

If True (the default), first-order order effects will be balanced Each condition will ap-
pear the same number of times immediately before and immediately after every other
condition. Balanced latin squares can only be constructed with an even number of con-
ditions.

uniform : bool, optional

If True (default is False), the Latin square will be randomly sampled from a uniform
distribution of Latin squares of size NxN. Otherwise, the sampling will be biased. The
construction of balanced, uniform Latin squares is not implemented.

Notes

The algorithm for computing unbalanced Latin squares is not very efficient. It is not recommended to construct
unbalanced, uniform Latin squares of order above 5; for non-uniform, unbalanced Latin squares it is safe to go
up to an order of 10. Higher than that, computation times increase rapidly.

The algorithm for computing balanced Latin squares is fast only because it is not robust; it is very biased and
only samples from the same limited set of balanced Latin squares. However, this is usually not an issue. For
more implementation details, see latin_square and balanced_latin_square.

first_pass(conditions)
Handle operations that should only be performed once, initializing the object before ordering conditions.
For LatinSquare, the square is constructed.

Parameters conditions : sequence of dict

A list of conditions, where each condition is a dictionary mapping IV names to IV
values.

Returns iv_name : str or tuple

The name of the IV to be created one level up, 'latin_square_row'.

iv_values : tuple

Values of the IV to be created one level up, integers each corresponding to one row of
the Latin square.

5.1. Contents 51

experimentator Documentation, Release 0.3.2

5.1.5 Indices and tables

• genindex

• modindex

• search

52 Chapter 5. License

Python Module Index

e
experimentator.order, 47

53

experimentator Documentation, Release 0.3.2

54 Python Module Index

Index

A
add_base_level() (experimentator.DesignTree method),

46
add_callback() (experimentator.Experiment method), 30
add_data() (experimentator.Experiment method), 31
add_data() (experimentator.section.ExperimentSection

method), 40
all_subsections() (experimentator.Experiment method),

31
all_subsections() (experimenta-

tor.section.ExperimentSection method),
40

append_child() (experimentator.Experiment method), 32
append_child() (experimenta-

tor.section.ExperimentSection method),
41

append_design_tree() (experimentator.Experiment
method), 32

append_design_tree() (experimenta-
tor.section.ExperimentSection method),
41

as_graph() (experimentator.Experiment method), 32
as_graph() (experimentator.section.ExperimentSection

method), 41

B
basic() (experimentator.Experiment class method), 32
blocked() (experimentator.Experiment class method), 33
breadth_first_search() (experimentator.Experiment

method), 34
breadth_first_search() (experimenta-

tor.section.ExperimentSection method),
41

C
CompleteCounterbalance (class in experimentator.order),

49

D
depth_first_search() (experimentator.Experiment

method), 34
depth_first_search() (experimenta-

tor.section.ExperimentSection method),
42

Design (class in experimentator), 43
DesignTree (class in experimentator), 46

E
Experiment (class in experimentator), 29
experimentator.order (module), 47
ExperimentSection (class in experimentator.section), 39
export_data() (experimentator.Experiment method), 34
export_experiment_data() (in module experimentator), 39

F
find_first_not_run() (experimentator.Experiment

method), 34
find_first_not_run() (experimenta-

tor.section.ExperimentSection method),
42

find_first_partially_run() (experimentator.Experiment
method), 34

find_first_partially_run() (experimenta-
tor.section.ExperimentSection method),
42

first_pass() (experimentator.Design method), 44
first_pass() (experimentator.DesignTree static method),

46
first_pass() (experimenta-

tor.order.CompleteCounterbalance method),
49

first_pass() (experimentator.order.LatinSquare method),
51

first_pass() (experimentator.order.Ordering method), 48
first_pass() (experimentator.order.Sorted method), 50
from_dict() (experimentator.Design class method), 45
from_dict() (experimentator.Experiment class method),

35
from_spec() (experimentator.DesignTree class method),

47

55

experimentator Documentation, Release 0.3.2

from_yaml_file() (experimentator.Experiment class
method), 35

full_cross() (experimentator.Design static method), 45

G
get_next_tree() (experimentator.Experiment method), 35
get_next_tree() (experimenta-

tor.section.ExperimentSection method),
42

get_order() (experimentator.Design method), 45
get_order() (experimentator.order.NonAtomicOrdering

method), 49
get_order() (experimentator.order.Ordering method), 48
get_order() (experimentator.order.Shuffle method), 48
get_order() (experimentator.order.Sorted method), 50

I
iv (experimentator.order.NonAtomicOrdering attribute),

49

L
LatinSquare (class in experimentator.order), 51
load() (experimentator.Experiment static method), 35

N
new() (experimentator.DesignTree class method), 47
new() (experimentator.Experiment class method), 35
new() (experimentator.section.ExperimentSection class

method), 42
NonAtomicOrdering (class in experimentator.order), 49

O
Ordering (class in experimentator.order), 47

P
parent() (experimentator.Experiment method), 35
parent() (experimentator.section.ExperimentSection

method), 42
parents() (experimentator.Experiment method), 36
parents() (experimentator.section.ExperimentSection

method), 43
possible_orders() (experimentator.order.Ordering static

method), 48

R
resume_section() (experimentator.Experiment method),

36
run_experiment_section() (in module experimentator), 38
run_section() (experimentator.Experiment method), 36

S
save() (experimentator.Experiment method), 36
Shuffle (class in experimentator.order), 48

Sorted (class in experimentator.order), 50
subsection() (experimentator.Experiment method), 37
subsection() (experimentator.section.ExperimentSection

method), 43

U
update() (experimentator.Design method), 46

W
walk() (experimentator.Experiment method), 37
walk() (experimentator.section.ExperimentSection

method), 43
within_subjects() (experimentator.Experiment class

method), 37

56 Index

	Not handled here
	An example
	Installation
	Dependencies
	From PyPi
	From source (development version)

	Other libraries
	Alternatives
	Complimentary libraries

	License
	Contents
	Concepts
	Creating an experiment
	Command-line interface
	API reference
	Indices and tables

	Python Module Index

